Блог им. Replikant_mih |ML грааль в трейдинге.

Взяли в руки блокнотики?))

 

Грааль в ML для трейдинга состоит из нескольких компонентов. По сути грааль, это «правильные» ответы на вопросы:

  1. Что используется в качестве объектов, на которых мы обучаемся. Что за срез. Что? – Свеча, день, тик, трейдер, стакан, паттерн? Очень важный компонент.
  2. Признаковое описание этих объектов. Супер-важная тема. Пространство для креатива.
  3. Таргет – важная тема, но скорее производная от «что является объектом». После выбора объекта, с таргетом становится ± понятно.
  4. Тип модели. Эта штука, на самом деле не так и важна, как кажется.
  5. Параметры модели (гиперпараметры и вот это вот всё). Из одних гиперпараметров кашу не сваришь, их нужно использовать скорее чтобы «не испортить блюдо».
  6. Процесс. Обучения, отбора, валидации модели. Супер-важная тема тоже.

 

Пожалуй, можно составить ТОП покороче:

  1. Что является объектом.
  2. Признаковое описание.
  3. Процесс отбора данных, обучения, отбора, валидации моделей.


( Читать дальше )

Блог им. Replikant_mih |Твой алго-трейдинг будет таким, каким ты захочешь.

 

Конечно, речь о процессе). Результат подтянется если с процессом все ок. Сейчас о процессе.

 

Алго-трейдинг что дышло… Будет таким каким ты захочешь чтобы он был. Захотел поиграть в исследователя. Понятно, копаясь в каждой новой стратегии, ты исследуешь, но тут захотелось более по-взрослому и не в разрезе стратегий.

 

Недавно задавался вопросом, какой таргет для ML выбрать, много интересного написали в комментариях. Собрал тестовый стенд, формализовал таргеты, написал на питоне обработчик (вплоть до интерпретатора) результатов и погнал.

 

Взял 5 стратегий. Не буду вдаваться в детали своего подхода, для простоты… — взял 5 дата-сетов, или 5 признаковых описаний. Прикрутил некоторое кол-во разных таргетов, разнообразил некоторыми другими различиями (читай, факторами) и все это основательно прогнал. Результаты замерял на OOS.

 

Ожидание:

1. Будет выраженное влияние используемого таргета на результат стратегии.

2. Возможно, получится заметить какую-то закономерность по поводу зависимости качества модели от используемого таргета в зависимости от типа стратегии/признакового описания.



( Читать дальше )

Блог им. Replikant_mih |Что я понял, обучая модели.

Вернее так: что я увидел, обучая модели. Всякие подобные темы любят поднимать трейдеры, они отлично располагают для пространных рассуждений о рынке и жизни, а я это, можно сказать, увидел наглядно. В общем, наблюдения не что-то гениальное, мной открытое, не грааль, но я это наблюдаю.

 

Что я делаю:

Играюсь с моделями ML, играюсь гипер-параметрами – параметрами самих моделей непосредственно и моими какими-то входящими параметрами. Смотрю как меняются результаты в зависимости от этих параметров.

 

Что я увидел:

  1. Где-то закономерностей объективно больше, где-то объективно меньше. Если прочесываешь график моделями (с разными параметрами) по мат. ожиданию OOS результатов совокупности моделей и по их распределению видно, что из каких-то графиков закономерности извлекаются на ура, а из каких-то со скрипом. В данном случае график это пересечение по тикер-TF-временной отрезок. Да даже если брать только тикер, некоторые, что называется, палку воткни, она зацветёт, а в некоторых надо очень постараться, чтобы нащупать нормальные закономерности.
  2. Похоже, действительно легче прогнозировать на короткие интервалы. Но эта закономерность выглядит не так, как её обычно преподносят. Обычно в ходу какая-то такая версия: чем ближе, тем легче, типа на минуты легче, чем на часы и т.д. Я бы сказал, что подтверждение находит скорее следующее: чем больше отношение горизонта прогноза к длине промежутка времени, данные из которого непосредственно участвуют в прогнозе. Ну т.е. если ты принимаешь решение по 50 свечам, то на 2*50 можно прогнозировать с большей точностью (winrate), чем на 10*50 и т.д. При этом в другом контексте, например, если ты ушел на TF выше, ты эти 10*50 сможешь спрогнозировать уже с хорошей точностью.
  3. Объективно раньше было зарабатывать легче. По ошибке из большого промежутка времени сначала какое-то время брал для обучения данные не самые свежие, а самые древние и удивлялся очень приличным результатам моделей, на свежих данных моделям можно сказать драматически сложнее извлекать закономерности.

....все тэги
UPDONW
Новый дизайн